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Summary

Our understanding of the pathophysiology of obesity remains at best incomplete

despite a century of research. During this time, two alternative perspectives have

helped shape thinking about the etiology of the disorder. The currently prevailing

view holds that excessive fat accumulation results because energy intake exceeds

energy expenditure, with excessive food consumption being the primary cause of the

imbalance. The other perspective attributes the initiating cause of obesity to intrinsic

metabolic defects that shift fuel partitioning from pathways for mobilization and oxi-

dation to those for synthesis and storage. The resulting reduction in fuel oxidation

and trapping of energy in adipose tissue drives a compensatory increase in energy

intake and, under some conditions, a decrease in expenditure. This theory of obesity

pathogenesis has historically garnered relatively less attention despite its pedigree.

Here, we present an updated comprehensive formulation of the fuel partitioning the-

ory, focused on evidence gathered over the last 80 years from major animal models

of obesity showing a redirection of fuel fluxes from oxidation to storage and accumu-

lation of excess body fat with energy intake equal to or even less than that of lean

animals. The aim is to inform current discussions about the etiology of obesity and by

so doing, help lay new foundations for the design of more efficacious approaches to

obesity research, treatment and prevention.
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1 | INTRODUCTION

After more than a century of research and debate on the etiology of

obesity, our understanding of its pathophysiology remains at best

incomplete, even as rates of obesity continue to rise to unprecedented

levels. During this time, two alternative perspectives have helped shape

thinking about the etiology of the disorder. One focused on the obser-

vation that obesity is often associated with excessive appetite and food

intake. This currently prevailing view holds that excessive fat accumula-

tion results because energy intake exceeds energy expenditure.1,2

Excessive food consumption is now considered the primary cause of

the imbalance.3,4 The other perspective was prompted by the common
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observation that many individuals appear to accumulate and sustain

excessive adiposity even with restricted food intake. This view attri-

butes the fundamental cause of obesity to intrinsic metabolic defects

that shift fuel partitioning from pathways for mobilization and oxidation

to those for synthesis and storage. In this scenario, the failure to limit

energy intake to energy expenditure is not a primary or initiating cause

of excessive fat accumulation, but rather a manifestation and conse-

quence of primary disturbances in fuel partitioning and the sequestra-

tion of fat in adipose tissue. The resulting reduction in fuel oxidation,

trapping of energy in adipose tissue, and greater energy requirements

of a larger metabolically active body mass in turn drives a compensatory

increase in food consumption.

Historically, this fuel partitioning theory of obesity pathogenesis

has garnered relatively less attention from the scientific community

despite its pedigree and, as this paper will discuss, observations since

the 1940s that animal models of obesity accumulate excess body fat

with energy intakes equivalent to, or even less than, that of lean

controls. While a specific application of this theory to dietary drivers

of the obesity epidemic, the carbohydrate-insulin model, has recently

generated considerable discussion and debate in relation to the

energy balance view,4–8 this paper does not engage in this debate nor

explore diet-related factors in the obesity epidemic. Rather, we pre-

sent a comprehensive update of the theory, focusing on evidence

accumulated since its last full exposition in 1941.9 Our aim is to

inform current discussions of the etiology of obesity and by so doing,

help lay new foundations for the design of more efficacious

approaches to obesity research, treatment and prevention.

After a brief historical overview, we describe the fuel partitioning

theory at a conceptual level and present general methodological and

interpretive issues in testing this theory. Next, we apply these broad

considerations to a detailed analysis of the evidence for the partitioning

theory at a mechanistic level from studies of the seminal animal models

of obesity. Then, we explore genetic, neural and hormonal controls of

fuel partitioning that may contribute to disordered fuel fluxes leading to

increased fat accumulation and apply the fuel partitioning perspective to

interpretation of results from studies of human obesity. Finally, we con-

sider future directions for research on obesity pathogenesis based on

disordered fuel partitioning that may inform prevention and treatment.

2 | THE FUEL PARTITIONING THEORY OF
OBESITY

2.1 | History

Through the 1930s, medical textbooks explicitly considered the possi-

bility that obesity could be a primary metabolic disorder “not always

due to excessive intake of food,” as stated earlier in Osler's 1914 Prin-

ciples and Practice of Medicine.10 By then, von Bergmann had departed

“from the purely energetic viewpoint”11 and proposed instead that

adipose tissue in individuals predisposed to obesity has an exagger-

ated tendency to take up and sequester fat, and that this predisposi-

tion constitutes the primary cause of obesity.12 Bauer later referred to

this characteristic of fat tissue as “lipophilia,” and described how the

accumulation of excessive fat in lipophilic adipose tissue would

deprive other tissues of energy leading to increased hunger and/or

lethargy.9,13 In his 1942 monograph, Functional Pathology, Lichtwitz

described this process as “the fat tissue dominat[ing] over the active

tissues in the competition for food stuffs.”14 The Bauer/von

Bergmann hypothesis persisted as a viable explanation of obesity

pathogenesis through the mid-20th century, described variously as

endogenous, constitutional or metabolic obesity.15–19

Laboratory research, beginning in the 1930s, that elucidated the

functions of adipose tissue in the synthesis, uptake, storage, and

mobilization of fat fuels bolstered this perspective. This work refuted

earlier thinking that regarded adipose tissue “an inert site for fat

storage,”20 and later led to the incorporation of the dynamics of adi-

pose tissue function into formulations of obesity pathophysiology

based on chronic disturbances in metabolic fuel trafficking that cause

and sustain excess fat storage and, in turn, increase food intake.5,21–28

2.2 | The theory

The fuel partitioning theory takes as its starting point the basic biolog-

ical requirement for a continuous supply of energy-yielding substrates

and production of biological energy. The theory explains obesity as

resulting from a primary intrinsic disorder in this homeostatic system

that (i) biases fuel partitioning from oxidation to storage; (ii) reducing

circulating fuel availability and oxidation while increasing body mass

and energy needs; (iii) resulting in a relative reduction in cellular

energy production and signaling that; (iv) consequently stimulates

energy intake and/or reduces energy expenditure as compensatory

responses to restore homeostasis (Figure 1).

2.2.1 | Energy homeostasis as foundational

Endocrine, neural and cellular processes maintain energy homeostasis

by providing a continuous supply of metabolic fuels and production of

cellular energy. As a result, energy-yielding substrates are partitioned

among different tissues and utilized as necessary to satisfy maintenance

requirements and special needs generated by physiological

(e.g., reproduction, lactation), pathophysiological (e.g., illness) and envi-

ronmental (e.g., ambient temperature, famine, predation) factors. Such

trafficking also allocates fuels in conjunction with meal-to-meal, diurnal

and seasonal feeding and fasting cycles associated with, respectively,

anabolic (fuel synthesis and storage) and catabolic (mobilization and oxi-

dation) processes. Adipose tissue plays a critical role in energy homeo-

stasis by buffering the fuel supply across feeding and fasting cycles and

in response to changing conditions. In this context, excessive adiposity

arises from imbalances in fuel fluxes across adipocytes,26 increased adi-

pogenesis/hyperplasia,29 or related processes operating outside of adi-

pose tissue involving other peripheral organs, hormones and the

nervous system that shift substrate partitioning toward excessive stor-

age (Figure 2). Such a potential multifactorial etiology is consistent with

the polygenic nature of obesity.30,31
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F IGURE 1 Basic features of the fuel partitioning theory. In lean individuals with a stable body weight, fuel partitioning between pathways of
fat synthesis and storage versus mobilization and oxidation are in equilibrium, resulting in a relatively constant fat mass, metabolic fuel supply,
and cellular energy production, which is monitored to control energy intake. Individuals with developing obesity, have an intrinsic disorder in fuel
partitioning that shifts the equilibrium of fuel fluxes toward lipid synthesis and deposition, which in turn decreases the supply of metabolic fuels
and cellular energy production, resulting in a compensatory increase in energy intake that can foster additional increases in fat mass in a feed-
forward fashion.

F IGURE 2 Potential mechanisms and controls of fuel partitioning leading to fat sequestration. An intrinsic shift in fat fuel partitioning toward
storage is mediated by upregulation of cellular mechanisms of lipid synthesis, uptake and adipogenesis and downregulation of lipid mobilization
and oxidation, which traps fat in adipose tissue and reduces energy production leading to increased energy intake. Increased protein synthesis
and decreased proteolysis drive the growth of lean mass and contribute to weight gain with ad libitum access to food. Under the influence of
genetic, environmental, and dietary factors, changes in gene expression, secretion and action of hormones, and neural activity control these
cellular mechanisms of partitioning.
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2.2.2 | Compensatory effects on energy intake and
expenditure

While mobilization of internal bodily energy reserves increases fuel

availability to organs and cells, continuing resting and physical

activity-related energy expenditures require eventual replenishment

from external sources through food intake. In turn, changes in the

availability, uptake and oxidation of fuels provide feedback control of

food intake,21,32–34 possibly through the operation of energy sensors

in liver and brain35–37 that stimulate or inhibit eating behavior in

response to, respectively, a reduction or increase in the production of

cellular energy. In this way, a shift in fuel partitioning toward synthe-

sis, storage and sequestration of fat results in the increase in food

intake usually associated with the development of obesity.38

In addition to increasing energy intake, a shift in fuel partition-

ing favoring fat deposition over oxidation may also reduce energy

expenditure, especially if intake is restricted, by limiting the supply

and/or oxidation of fuels in metabolically active tissue or through

neuroendocrine responses to a detected energy deficiency. Such an

effect in muscle could inhibit physical activity, especially considering

the relatively high energetic cost of carrying greater body weight

in obesity.39,40 Similarly, storage and sequestration of body fat in

white adipose tissue could blunt energy expenditure from brown

adipose tissue (BAT) thermogenesis, which is fueled by oxidation

of fatty acids and their acylcarnitine metabolites, among other

metabolites.41–44

2.2.3 | Body composition

Common obesity in humans is typically associated with an increase

in absolute lean mass,45 arising in part from the increased muscular

work and metabolic demands of moving and maintaining a greater

body mass39,40 and from the operation of metabolic and hormonal

processes driving the anabolic state of increasing body mass. This

increase in metabolically active lean mass may exacerbate the deficit

in available fuels caused by the shift in fuel trafficking from oxida-

tion to storage because additional energy is required for lean tissue

synthesis and maintenance; the associated energy demand would

contribute to an increased drive to eat.27,46 However, when food

intake does not increase, or is experimentally restricted as in experi-

ments with many animal models of obesity, lean mass may decrease

while fat mass continues to enlarge. In this situation, the persistent

shift in substrate partitioning toward energy deposition requires that

the body catabolize lean tissue to release amino acids as a substrate

for gluconeogenesis as occurs with fasting. This coexistence of

increased adipose mass with decreased lean mass and other signs of

starvation (e.g., increased hunger, decreased voluntary physical activ-

ity, lower resting energy expenditure) observed in controlled animal

experiments discussed below provides prima facie evidence for the

state of “internal starvation,” as hypothesized by Astwood,19

Hetherington & Ranson47 and others5 and postulated by the fuel

partitioning theory.

3 | TESTING THE THEORY – GENERAL
CONSIDERATIONS

If obesity results from an intrinsic shift in fuel partitioning away from

energy production to storage with secondary (compensatory) effects

on energy intake and/or expenditure, then it should be possible to dis-

associate excess fat accumulation from increases in energy intake or

decreases in expenditure. In this section, we discuss necessary fea-

tures of experimental designs that provide such appropriate tests of

the theory, and highlight issues of data interpretation. This discussion

provides the foundation for the subsequent detailed review of find-

ings from rodent models of obesity.

3.1 | Design consideration

3.1.1 | Excess fat deposition and food intake

A wide variety of evidence suggests that excessive fat accumulation

can occur without increases in energy intake above that of lean ani-

mals under controlled conditions. As detailed below, in animal models

of obesity, increases in fat storage or alterations in the metabolic

underpinnings of fat deposition (e.g., increased lipogenesis, decreased

lipolysis) have often been observed when energy intake is equivalent

to or less than that of lean controls, or before the onset of increases

in intake. In some experiments in which an increase in energy intake

occurs simultaneously with weight gain, the reported increases in feed

efficiency (defined by the gain in body weight or fat mass per calorie

or gram of food consumed) also provides evidence consistent with a

primary shift in partitioning toward fat storage, although increased

absorption of dietary energy may also play a role. For obesity-inducing

treatments, experiments designed to test the independence of excess

fat accumulation from increased food consumption may involve

restriction of food intake to baseline (pre-treatment) levels. To com-

pare lean and obese animals, intakes may be restricted to the level of

lean controls by pair-feeding or further restriction below that of lean

controls. Limiting energy intakes to control levels in animals otherwise

inclined to increase consumption may induce a gorging pattern of eat-

ing that in itself can foster fat accumulation.48 Consequently, many

such experiments as cited below minimize this confound by spacing

food delivery over the day, yoking food availability via mechanical dis-

pensers to the intake of the control group, or restricting the amount

of or access time to food for both ad libitum and food-restricted

groups.

3.1.2 | Excess fat deposition and energy
expenditure

Historically, a relative inhibition of energy expenditure has been seen

as a potentially important contributing cause of excess fat accumula-

tion. In humans eating ad libitum, however, obesity is usually associ-

ated with increased energy expenditure due to the typically
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concomitant increase in lean mass and the energy required to carry

and move the excess weight.39,40,49 Accordingly, the role of reduced

energy expenditure in the development of human obesity has been

minimized.3,4 Studies in laboratory rodents sometimes, but not always,

find markedly reduced energy expenditure especially during the devel-

opment of obesity.50,51 Some of these discrepant findings may be arti-

factual, resulting from normalizing whole-animal energy expenditure

to body weight when adipose tissue, which is relatively inactive meta-

bolically, comprises a large proportion of body mass.50,51 When

metabolic rate is expressed per animal, such differences may be

reduced or eliminated.

Measurement of whole-body energy expenditure can help to dis-

tinguish between obesity models focused on increased intake versus

altered fuel partitioning on an organismic level, but it has little rele-

vance for understanding physiological energy homeostasis, which, like

all homeostatic systems, depend on feedback from sensors sensitive

to changes in a regulated variable.52 Because such sensors are invari-

ably specialized cells (with respect to function and/or connections) in

specific tissues, it is unclear how energy expenditure at an organismic

(whole-body) level could be sensed. The fuel partitioning theory pro-

poses that variations in the supply and production of energy caused

by shifts in fuel fluxes are detected by energy sensors in the brain and

liver34–37 that control energy intake and expenditure.

A reduced capacity for thermoregulatory thermogenesis in BAT

has been interpreted as a cause of excessive fat deposition in animal

models,53 but, as detailed below, eliminating the need for thermogen-

esis by maintaining animals at thermoneutral temperatures does not

necessarily prevent excess fat deposition, challenging this interpreta-

tion. Furthermore, in some experiments as discussed below, excess

body fat accumulates even when food is restricted and animals are

kept at thermoneutral temperatures. Similarly, as covered below,

excess fat deposition has been reported under conditions of food

restriction with apparently no concomitant decrease in energy expen-

diture. In these instances, considering the first law of thermodynam-

ics, measures of expenditure are presumably insufficient to detect this

change or counter-balancing changes may occur (e.g., catabolism of

lean mass, an increase in dietary energy absorption, or, perhaps, a

decrease in excretion of energy-containing substances in urine or

feces).54

3.2 | Interpretive considerations

3.2.1 | Energy intake as causal driver versus
contributor

Although excess adiposity may occur with food restriction, such as by

pair-feeding or even underfeeding relative to controls, the magnitude

of fat accumulation will be reduced relative to ad libitum feeding con-

ditions. This observation demonstrates that increased food intake in

response to a shift in fuel flux toward storage may facilitate the full

manifestation of an obese phenotype, but not that increased intake

constitutes the initiating event. Indeed, whereas increasing intake by

forced overfeeding may cause excess fat deposition,55,56 retention of

this extra fat after termination of overfeeding would only be expected

in the case of an obesity-susceptible phenotype with a propensity to

partition fuels into fat storage. Furthermore, depending on the com-

position of the diet (see below), initial increases in intake might exac-

erbate the shift in fuel flux away from oxidation, contributing to a

vicious cycle of increased fat deposition and food consumption.

From a fuel partitioning perspective, obesity results from dysfunc-

tion of mechanisms and controls directing fuel fluxes. The machinery

controlling food intake is not defective, but rather works well, detect-

ing changes in the supply and production of energy resulting from

these disturbances in fuel partitioning.34 However, malfunction in the

physiological and neural mechanisms directly controlling eating behav-

ior could also cause obesity independently of a primary shift in periph-

eral fuel fluxes toward storage, without necessarily conflicting with

the fuel partitioning theory, if these controls lie downstream of fuel

partitioning. In this scenario, preventing the increase in intake would

prevent excess fat accumulation. Our review of the literature on

rodent models of obesity indicates that this latter scenario is, at best,

rare; thus, the fuel partitioning theory offers substantial explanatory

power to account for otherwise anomalous pathophysiological fea-

tures in these animals.

3.2.2 | Challenges and insights from a complex
system

Because living organisms require a continuous supply and production

of energy, including amid changing nutritional and pathophysiological

conditions, fuel partitioning can be understood as part of a resilient

homeostatic system with a myriad of compensatory and counter-

regulatory responses that evolved to resist perturbation in the supply

of metabolic fuel and the generation of biological energy. The recipro-

cal utilization of carbohydrate and fat fuels, as described by Randle

and colleagues in the mid-1960s,57 is one notable example. The

capacity for compensation and counter-regulation can also present a

challenge for the experimental evaluation of obesity pathogenesis.

For instance, experimentally-induced reduction in the capacity for

lipolysis in adipose tissue that might be expected to increase lipid

stores may be counter-balanced by a reduction in adipocyte lipid syn-

thesis and storage, thereby preventing excess fat accumulation.58

From a practical standpoint, studies testing the fuel partitioning the-

ory need to include measures of or control for these redundant and

compensating mechanisms in the energy homeostasis system.

This complexity, however, can also provide mechanistic insights:

A shift in fuel partitioning away from storage, associated with dimin-

ishing insulin sensitivity in enlarging adipocytes,59–61 may explain the

commonly-observed transition from a dynamic stage of weight gain to

a body weight plateau as an equilibrium is reached in adipocytes

between fat deposition and mobilization.21 Similarly, restoration of

body weight and fat stores to baseline or control levels after food

restriction can be understood in terms of fuel partitioning. Consump-

tion of a meal during prolonged caloric restriction results in rapid
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(within 1–2 h) and exaggerated increases in lipogenesis and the capac-

ity for lipid uptake in adipose tissue.62,63 Longer term recovery of

body weight and fat during refeeding after restriction is similarly asso-

ciated with increased lipogenesis, adipose tissue fat uptake, and feed

efficiency independent of the increase in food intake during

refeeding.64,65

4 | ANIMAL MODELS: EVIDENCE FOR
INTRINSICALLY DISORDERED FUEL
PARTITIONING

The development of human obesity typically involves net average

increments of as little as 1–2 g (<20 kcal) per day of excess fat deposi-

tion over years or decades.66,67 Such a small increment in fat storage,

representing 1% or less of total daily energy intake, can be difficult to

quantify in the short-term (days to weeks) given the normal variability

of these parameters and the inadequate sensitivity of existing

techniques to measure them. Shifts in fat deposition can be assessed

in longer-term (months) residential studies that allow for rigorous con-

trol over food intake, but these are difficult and expensive to carry

out. Consequently, there is little conclusive evidence to assess the

role of disordered fuel partitioning in the pathogenesis in human

obesity.

In contrast to humans, obesity in laboratory rodents (most com-

monly, mice and rats) develops quickly, within weeks, often with

increments in fat deposition proportionally much greater than that

seen in humans. This developmental course, together with the

ability to precisely manipulate and measure food intake, offers an

opportunity to rigorously test the fuel partitioning theory. Experi-

ments using rodent models of obesity have shown that excessive fat

deposition or, in the absence of quantifiable changes in body compo-

sition, upregulation of the metabolic processes associated with fat

deposition, typically occur independently of an increase in energy

intake.

4.1 | Hypothalamic models

4.1.1 | Ventromedial hypothalamic lesions

Experimentally induced lesions of the ventromedial hypothalamus

(VMH) in rats, as pioneered by Hetherington and Ranson,47,68 was the

first widely used animal model of obesity. Early on, these investigators

noted that some animals become obese without increasing food

intake post-surgery.47 Brobeck and colleagues soon reported a similar

observation, although they emphasized that hyperphagia –

i.e., voracious eating – occurs in this form of obesity.69 Subsequent

pair-feeding experiments, however, using various methods to lesion

the VMH or adjacent hypothalamic regions, confirmed the original

observation that obesity can develop in these animals in the absence

of hyperphagia or any increase in intake, consistent with a fuel parti-

tioning disorder.70–75 Weanling rats, which do not become

hyperphagic for at least six weeks after hypothalamic lesions,76

deposit more body fat than control animals, even when eating half the

amount of food as ad libitum fed animals.77 In VMH-lesioned rats

food-deprived after surgery to avoid confounding effects of food

intake, an incipient shift in fuel partitioning towards fat deposition,

evidenced by increased lipogenesis and fatty acid esterification as well

as decreased lipolysis, can occur within 1 h after hypothalamic

damage.78–82

Using lesioned rats pair-fed to intact controls, low physical activ-

ity levels in VMH animals were estimated to account for only 9 g of

the approximately 180 g of body fat accumulated during an 8-week

experiment with ad libitum feeding.83 Although pair-fed lesioned rats

had lower resting metabolic rates, this effect was attributed to

reduced lean mass in the pair-fed animals; lean body mass is normal in

ad libitum fed VMH-lesioned rats. The loss of lean mass in the

pair-fed lesioned animals is reminiscent of weanling rats with VMH

damage that do not become hyperphagic for several months after sur-

gery.84 Pair-feeding (and even some degree of underfeeding) of

lesioned rats relative to control levels during maintenance at a ther-

moneutral ambient temperature does not prevent excess fat deposi-

tion,85 suggesting that reduced BAT thermogenesis is not essential to

development of VMH obesity.

4.1.2 | Hypothalamic peptidergic circuits

Impairment of signaling in the hypothalamic melanocortin system

causes increased food intake and obesity in laboratory rodents86 and

has been implicated in human obesity.87 Inactivation of

melanocortin-4 (MC4R) receptors in the paraventricular nucleus

(PVN) of the hypothalamus by deletion of the Mc4r gene or chronic

intra-cerebroventricular (i.c.v.) administration of a melanocortin recep-

tor antagonist increases food intake and body fat mass in mice.88–90

Genetic deletion of the gene encoding the MC4R accessory protein

(MRAP2) also results in increased energy intake and obesity.91 Pair-

feeding experiments and time course analysis show that the increase

in fat deposition in Mc4r and Mrap2 null mice is independent of, and

precedes, the increase in food intake.88–91 Similar effects are seen

with genetic deletion of the MC3R receptor. In these animals, knock-

out mice fed ad libitum gain fat mass despite eating the same amount

or less than do wildtype controls depending on sex.92

Neurons in the hypothalamic arcuate nucleus that project to the

PVN release agouti-related protein (AGRP), an antagonist of melano-

cortin receptors (MC3R and MC4R). Chronic infusion of ARGP93 or

chronic activation of AGRP-producing neurons94 increase both food

intake and body fat mass in mice. Neuropeptide Y (NPY) is co-

expressed in AGRP neurons. Repeated injection of NPY into the

PVN95 or chronic i.c.v. infusion of the peptide96 induces an increase

in food intake and obesity. As with genetic or pharmacological sup-

pression of melanocortin receptors, excess fat deposition in response

to AGRP or NPY treatments is also observed when food intake is

restricted to that of control animals, albeit to a lesser extent than

under ad libitum feeding conditions.93,94,96 Consistent with the
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inhibitory effect of AGRP on melanocortin receptors, targeted

destruction of AGRP neurons in adult animals results in reduced

intake and body fat.97 However, using the same method for targeted

ablation of AGRP-containing neurons in neonates results in obesity in

adulthood with no effect on food intake compared with control

mice.98

As predicted by the fuel partitioning theory, manipulation of

these neuro-peptidergic circuits produces profound changes in fuel

partitioning.99,100 The excess fat deposition seen independently of

changes in food intake is associated with a shift from fat oxidation

toward synthesis, as evidenced by increased gene expression of lipo-

genic enzymes, whole body respiratory quotient (RQ), and hepatic tri-

glyceride secretion.88–92,94,96,101 Increased RQ is seen minutes after

acute stimulation of AGRP neurons and is blunted by pharmacological

inhibition of fatty acid synthase.94 Along similar lines, i.c.v. injection of

NPY in food restricted rats increases hepatic VLDL secretion within

2 h.102 The reported shift in fuel partitioning in experiments with pair-

fed or normo- and hypophagic Mc3r null mice occurs without any

measurable changes in energy expenditure, locomotor activity or

brown fat thermogenesis.88–92,94 Neonatal ablation of AGRP neurons

results in an unusual pattern of fuel partitioning in which RQ is

reduced, apparently the result of increased fatty acid oxidation in

muscle, but with increased hepatic triglyceride synthesis and secre-

tion.98 These observations highlight the limitation of whole-body

measurements of metabolism and fuel utilization for mechanistic

explanations of obesity pathogenesis.

4.2 | Genetic leptin deficiency models

4.2.1 | Obese (ob/ob) mouse

A loss-of-function mutation in the ob gene causes deficiency in the

production of the peptide hormone, leptin, which results in the hyper-

phagic obese phenotype of ob/ob.103 The ob/ob mouse, first described

in 1950,104 is one of the most studied genetic animal models of obe-

sity. Excess fat accumulation in these animals was soon shown to

occur in the absence of hyperphagia. ob/ob mice fed 25% less than

lean controls still deposit about three time as much body fat over a

7-month period.105 Early work also suggests that fat accumulation is

associated with an increased rate of lipogenesis even in mice that are

food restricted and losing weight over several days106 or food

deprived for 24 h.107

Numerous studies subsequently confirmed these early observa-

tions in pair-fed or food restricted ob/ob mice.108–111 Coleman

reported that ob/ob mice fed half the calories consumed by lean con-

trols nevertheless developed excessive adiposity.111 When allowed to

eat ad libitum, fattening precedes the increase in food intake during

ontogeny. Suckling ob/ob mice have greater body fat content than

normal mice as early as 7 days of age112,113 despite no measurable

difference in milk intake.114 Lipogenesis in ob/ob animals increases

between 10–15 days of age in suckling mice,115 prior to any increase

in food intake in newly weaned mice.116

Excess fat deposition in ob/ob mice is also commonly attributed

to reduced energy expenditure, although in some cases this has been

interpreted as an artefact of normalizing oxygen consumption in terms

of body weight50 as considered above. Expressing O2 consumption on

a per animal basis can eliminate the difference between lean and

ob/ob mice.113,117,118 A deficit in BAT thermogenesis is thought to

contribute to fat deposition in ob/ob mice that are maintained at rela-

tively cool temperatures (i.e., room temperature of �22�C or lower).

However, these animals still gain excess fat when pair-fed and main-

tained at thermoneutral ambient temperatures, largely obviating a role

for thermogenesis.108–111 Indeed, ob/ob mice appear to have no defi-

cit in BAT thermogenesis, but rather a disorder in thermoregulation

involving alterations in heat loss that affect their ability to defend

body temperature in the cold.50,118

4.2.2 | Diabetic (db/db) mouse

The db/db mouse lacks the long isoform of the leptin receptor,

required for leptin's cellular effects. As in ob/ob mice, db/db mice are

hyperphagic, and accumulate excessive fat independent of increased

energy intake. Suckling db/db mice as young as 12 days of age have a

greater percentage of body fat than do non-diabetic littermates.119 At

weaning (21 days), epididymal fat pads weighs four times as much in

db/db mice as they do in normal animals.120 These effects in db/db

suckling and weanling mice are associated with, respectively,

increased adipose tissue uptake of milk lipids and increased adipose

and hepatic lipogenesis. Energy expenditure per animal is similar in

db/db and normal mice housed at a thermoneutral temperature,

although, unlike ob/ob mice, is lower in db/db mice housed at room

temperatures.121 Pair-feeding and even some degree of underfeeding

relative to intakes of lean mice do not prevent excess fat deposition in

db/db mice maintained at either room temperature or thermoneutral

conditions.110,111,121–123

4.2.3 | Zucker (fa/fa) rat

The fa/fa rat has a leptin receptor missense mutation that prevents

leptin signaling. The fa/fa rat was first described in 1961 by Zucker &

Zucker124 who recognized that hyperphagic fa/fa rats, like ob/ob mice,

“have a more basic metabolic disturbance than simply an increased

appetite. When restricted to a normal food intake, they are still obvi-

ously fat in appearance. Therefore, in these two cases, it is indicated

that there is an abnormality in intermediary fat metabolism.” Subse-

quent experiments by Lois Zucker125 and others126,127 confirmed this

initial observation by demonstrating that fa/fa rats deposit more body

fat when pair-fed or under-fed relative to lean Zucker rats. Suckling

fa/fa rats as young as 7–10 days old consume no more milk from their

mothers than do normal littermates,128,129 but have heavier fat

pads.128,130–132

The early, pre-weaning increase in adiposity in fa/fa rat pups is

associated with increased adipose tissue lipoprotein lipase (LPL)
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activity,128,132,133 lipogenesis,131 lipogenic enzyme activity130,134 and

expression of glucose transporter 4 expression,134,135 all of which

would favor substrate shunting toward storage. Adipocyte LPL activ-

ity and lipogenesis is also greater in pair-fed post-weanling and adult

fa/fa rats126,127 Studies of the disposal of administered radiolabeled

triglycerides, fatty acids and glucose also demonstrate increased fuel

shunting into adipose tissue in weanling and adult fa/fa rats compared

with lean Zucker rats as well as in chronically food-restricted fa/fa

rats.136–139 Suckling fa/fa rats have a reduced capacity for thermoreg-

ulatory thermogenesis,140 which, while contributory, does not account

entirely for their excess fat deposition relative to nonobese

littermates.141,142

4.3 | Other genetic models

4.3.1 | Yellow (AY or Avy) mouse

Obesity in the yellow mouse is caused by a dominant mutation in

the agouti gene, normally expressed only in skin, that results in

ectopic expression of the agouti protein in other tissues.143 Overex-

pression of the agouti gene results in increased production of AGRP

and chronic inhibition of MC4R signaling in the brain.144 Obesity in

the yellow mouse was first documented in 1927145 and this model

has been used extensively in obesity research since. The develop-

ment of obesity in yellow mice is associated with increased food

intake and develops relatively slowly, with the appearance of

increased body weight, fat content and lipogenesis at about 8–

10 weeks of age.146–148 Young and adult yellow and non-yellow

mice have similar resting metabolic rates (per animal) at cold, room

and thermoneutral temperatures.149 However, yellow mice gain more

body weight and fat per calorie of food consumed than do non-

yellow agouti control animals146,150 and require 18% less food than

lean littermates to maintain the same weight from 4–8 weeks of

age.151 Consistent with these observations, obesity in yellow mice

has been attributed to an increased “efficiency of food utilization

more than the total caloric intake,”150 indicative of a shift in fuel flux

toward fat storage.152

Transgenic aP2-agouti mice overexpressing the agouti protein

specifically in adipose tissue show greater body weight and body fat

deposition even though food intake is identical to wild-type litter-

mates.153 This effect on body fat is consistent with the observation

that agouti protein increases fatty acid synthase activity and triglycer-

ide content of cultured adipocytes.154

4.3.2 | Otsuka Long-Evans Tokushima Fatty
(OLETF) rat

The OLETF rat, originally developed as a model for type 2 diabetes

mellitus,155 lacks cholecystokinin-A receptors in pancreas and

brain.156 Whereas diabetes develops relatively late in adulthood, obe-

sity begins to develop at 5–7 weeks of age,155,157–159 following the

onset of increased food intake.159 In two experiments, OLETF rats

pair-fed with lean control Long-Evans Tokushima Otsuka (LETO) rats

from 3 or 6 weeks of age did not gain excess body weight and fat by

12 weeks of age.158,159 In contrast, another study160 found that

OLETF rats pair-fed with LETO controls from 5 weeks of age had

more body fat at 21 weeks. As compared with sedentary conditions,

voluntary exercise starting at around weaning (3–5 weeks) in OLETF

rats prevents weight gain and fat accumulation without reducing

intake from increased levels.161–163 These effects of exercise are

associated with a shift in fuel partitioning reflected in a decrease in

hepatic lipogenesis and increase in fatty acid oxidation.163 Although

the results of these pair-feeding experiments in OLETF rats are incon-

sistent, this model, among the major ones reviewed here, may be a

relatively rare example of obesity arising from primary hyperphagia,

with no underlying defect in substrate partitioning.

4.4 | Diet-induced obesity

Interest in creating animal models of obesity through changes in die-

tary composition, in view of the importance of diet in human obesity,

followed discoveries of hypothalamic and genetic obesity in labora-

tory rodents.164 However, translation of data from these models to

humans should be restricted to shared, conserved mechanisms for

control of fundamental aspects of intermediary metabolism. Because

of species-specific differences in nutritional requirements and diet,

inferences from animal studies regarding optimal human dietary com-

position to prevent obesity should be made cautiously.

Fats. Early work on “dietary” or “nutritional” obesity focused on

the effects of fat content, finding that increasing the proportion of fat

in rodent food resulted in increased body weight, body fat, or percent-

age body fat.164–166 Obesity in these studies was accompanied by an

increase in not only energy intake, but also feed efficiency.164,166

While such a change in feed efficiency is consistent with the fuel par-

titioning theory, other findings provide more direct evidence. Body fat

increases more in animals fed diets with a relatively high versus low

fat content even when voluntary calorie intakes are similar.167–170

More critically, excessive fat accumulation also occurs when animals

are fed isocaloric amounts of diets with higher fat content171–176 and

does so even when fat digestibility is similar among isocaloric diets

differing in fat content.172

The fatty acid composition of high-fat diets may influence fat

deposition independent of changes in total energy intake. High-fat

diets comprised of long-chain saturated fats have been found in

some,177,178 but not all,179,180 experiments to induce greater body fat

deposition in laboratory rodents than those containing unsaturated

fats, an effect that has been attributed to hypothalamic inflamma-

tion.181 Fatty acid saturation per se does not appear to be the critical

factor because diets high in saturated fats with medium-chain lengths

cause neither obesity182 nor hypothalamic inflammation.183 The fuel

partitioning theory offers an explanation for these effects on fat accu-

mulation in that long-chain saturated fatty acids are oxidized less

readily than are unsaturated long-chain fatty acids,184–186 and
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medium-chain fatty acids are more readily and rapidly oxidized in

comparison with long-chain fatty acids.182,187

4.4.1 | Fat-carbohydrate interaction

Manipulation of dietary fat content necessitates changes in other

macronutrients, most commonly carbohydrates as was noted in one

of the earliest such studies.171 This issue is more than just methodo-

logical, because the excessive fat deposition induced by feeding diets

high in fat content appears to depend on the carbohydrate content of

such diets. Indeed, dietary carbohydrates (i.e., starch or sucrose), not

fats, may drive both the increased fat accumulation and hypothalamic

inflammation associated with consumption of long-chain saturated fat

diets in mice188 discussed above. Diets fed ad libitum that provide

most calories as fat, but lack carbohydrate, typically do not induce

obesity in laboratory rodents.189–192 However, adding a small amount

of carbohydrate (as low as 3–4% by weight) will make such high-fat

diets obesogenic.165,166,189,193

So-called “high-fat” diets that cause excess fat accumulation,

including those marketed commercially to induce obesity, typically

contain 20–50% (by weight) of refined carbohydrates, including corn-

starch, maltodextrin, sucrose or some combination thereof.164,167–

169,171–176 Such diets with equicaloric proportions of carbohydrates

and fats (approximately 40% each) appear most effective in causing

excess fat deposition194,195 compared with diets matched for caloric

density but differing in the proportion of carbohydrates and fats.195

Fat accumulation and feed efficiency decline as this ratio diverges

from parity in favor of either macronutrient,195 consistent with a pri-

mary metabolic effect of dietary composition that shifts the flux of

fuels toward storage.

4.4.2 | Carbohydrates

Typical commercial laboratory rodent chow is low in fat and high in

carbohydrates comprised mainly of minimally processed, low-glycemic

index grains. These “stock” or “standard” diets are often used as con-

trol diets in studies of diet-induced obesity because normal or genetic

wild-type animals fed such food remain relatively lean during their lab-

oratory life span. Purified diets containing refined carbohydrates and

sugar induce body weight and fat gain compared with stock diets

despite similar or lesser energy content,196,197 although other differ-

ences in diet composition could be contributory.198 Laboratory

rodents consuming diets with high-glycemic index starch gain more

body fat than do those eating diets with more slowly digestible starch,

even when food-restricted to a level that prevents excess weight

gain.199–202

In general, laboratory rats consuming low-fat diets formulated to

contain sucrose as the carbohydrate source deposit more body fat

than do those eating diets made with low-glycemic index starch or

some other sugars when energy intakes are similar or matched by

pair-feeding196,203–206 consistent with the lipogenic effects of

sucrose.207 Feeding granulated sucrose to rats as a supplement to

their standard chow increases body fat relative to feeding chow alone

without a significant change in total energy intake.208,209 However,

providing sucrose as a concentrated solution in addition to chow

results in a much more substantial increase in fat deposition or body

weight,198,209–212 in some cases without an increase in total calorie

intake.210,211 When offered along with chow, consumption of sucrose,

glucose or polysaccharides in solution, but not in powdered form,

increases both total calorie intake and body fat.198,209 Although we

can find no reports of pair-feeding studies conducted with carbohy-

drate solutions, the increase in fat deposition is associated with a

greater feed efficiency.198,211

4.4.3 | Susceptibility to diet-induced obesity

An etiologic model of obesity pathogenesis should explain heteroge-

neity in individual predisposition to excess fat accumulation.67 Sus-

ceptibility to diet-induced obesity varies among different strains of

laboratory rodents166,213 and also within strains. Distinct populations

of animals prone and resistant to diet-induced obesity (OP and OR,

respectively) have been identified in several outbred strains of

rats214,215 and inbred strains of mice.216–218 Selective breeding

of outbred OP and OR rats219 has generated sub-strains of animals

prone and resistant to diet-induced obesity (Levin DIO and DR rats,

respectively). The non-Mendelian bimodal distribution of OP and OR

subtypes within a strain suggests a polygenic pattern of inheritance,

resembling the genetics of common obesity in humans.219 Recent

work220,221 has found that induced deficiencies in the Trim28 and

Nnat genes in inbred mice also result in stable, bimodal distributions

of obese and lean animals. Consistent with the fuel partitioning the-

ory, obese Nnat deficient animals show increases in body fat weeks

before any increase in food intake relative to controls.221

Typically, body weight, body fat content, and food intake do not

differ between OP and OR outbred rats or inbred rodents eating stan-

dard chow, nor do chow-fed OP and OR rats differ with respect to

energy expenditure222,223 or physical activity.223,224 Chow-fed selec-

tively bred OP (DIO) rats are often,219 but not always,225–227 fatter

than their OR (DR) counterparts. However, OP animals regardless of

strain become clearly obese relative to OR animals when switched to

an obesogenic (typically high-fat, high refined carbohydrate/sugar)

diet. This greater fat deposition in OP animals is associated with

increased feed efficiency214–216,219,225 and, although often accompa-

nied by increased food intake, has been observed with intakes equiva-

lent to that of OR animals.218,227,228

Animals susceptible to diet-induced obesity appear predisposed

to excessive fat storage before being switched from chow to an obe-

sogenic diet. Compared with their OR counterparts, chow-fed OP rats

have (i) lower rates of adipose tissue lipolysis in vitro,229 (ii) a reduced

capacity for whole body226,227,230 and hepatocyte231 fatty acid oxida-

tion, (iii) reduced liver226 and adipose227 expression of genes involved

in oxidation of fatty acids, and (iv) increased expression of genes

involved in adipose tissue lipogenesis227 and hyperplasia.216
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Pharmacological stimulation of fatty acid oxidation with fenofibrate

reduces food intake, feed efficiency and body fat in obese OP rats,

but not lean OR rats.232 The decrease in food intake of fenofibrate-

treated OP rats appears secondary to their loss of body fat because

untreated OP rats pair-fed to treated OP animals do not lose body fat.

These results suggest that susceptibility to diet-induced obesity

reflects a preexisting disorder in fuel partitioning favoring fat storage

over oxidation.

5 | CONTROLS OF FUEL PARTITIONING

The mechanisms that direct fuel partitioning within cells and among

tissues discussed above are under interconnected genetic, neural, and

hormonal controls, which direct fuel fluxes in response to perturba-

tions in energy homeostasis resulting from internal and environmental

factors (Figure 2). Dysfunctions in these controls can modify intracel-

lular and inter-organ mechanisms of fuel partitioning resulting in a

shift in metabolic fuel fluxes toward excess fat accumulation. Indeed,

genetic, neural, and hormonal disorders have been implicated in the

etiology of obesity for many years, albeit largely in terms of their

observed (and presumed direct) influence on energy intake and

expenditure. The fuel partitioning perspective offers a different lens

through which to view the role of these controls in the development

of obesity.

5.1 | Genetic control

Variations in gene sequences, structure, and regulation modify expres-

sion or function of proteins (e.g., enzymes, transporters, receptors)

that mediate metabolic fuel fluxes. Dysfunction of such genetic con-

trol is reflected in the excessive fat deposition independent of

increased food intake seen in animal models of genetic obesity associ-

ated with spontaneous mutations such as the ob/ob or yellow mouse.

Susceptibility to diet-induced obesity is associated with pre-existing

changes in the expression of proteins involved in, for example, lipo-

genesis and fatty acid oxidation. Illustrating the interconnection of

genetic and neural controls of fuel partitioning, similar changes in

gene expression in peripheral tissues are observed after obesity-

inducing manipulations of hypothalamic neuronal function that are

independent of changes in intake.

Genetic variants associated with adipose tissue function have

long been implicated in the development of obesity.233 Large-scale

genome wide association studies (GWAS) have identified a number of

genetic variants correlated with increased risk of obesity, such as

polymorphisms in the fat mass and obesity related (FTO) and melano-

cortin 4 receptor (MC4R) genes.234 FTO and MC4R risk variants have

been thought to engender obesity through increased energy intake

because these genes are robustly expressed in the central nervous

system.30,234 However, as reviewed above, deletion of the Mc4r gene

or suppression of MC4 receptors in mouse hypothalamus, which

cause obesity and increase food intake, shift the partitioning of fuels

into storage even when intake is restricted. FTO variants can act

locally in adipose tissue to direct fat metabolism from oxidation to

storage235 and the obesity-related effects of Fto variants appear to be

mediated by changes in the expression of Irx3 and Irx5 in brain as well

as adipose tissue.236 Thus, from a fuel partitioning perspective, FTO

and MC4R gene associated variants, and others considered directly

involved in hunger or satiety,6 may, at least in part, drive intake and

obesity through changes in fuel fluxes favoring fat storage.

5.2 | Neural control

Claude Bernard's work in the 1850s first established the existence of

a central nervous system control of peripheral fuel metabolism.237

This control is now known to be mediated by autonomic efferent

nerves that innervate tissues important in maintaining energy homeo-

stasis (e.g., adipose tissue, liver, gastrointestinal tract, pancreas, adre-

nal medulla) and afferent autonomic neurons that carry information

(e.g., regarding nutrients, hormones, intracellular metabolic processes)

from peripheral tissues signaling metabolic fuel status and energy pro-

duction.238–242 The hypothalamus integrates inputs from autonomic

sensory nerves and central neuronal sensors of circulating nutrients,

energy production, and hormones, and modulates sympathetic and

parasympathetic (vagal) outputs to control, respectively, catabolic and

anabolic metabolic processes. Accordingly, reduced sympathetic activ-

ity and/or increased parasympathetic activity would be expected to

foster fat storage over oxidation.

Obesity caused by experimental disruption of hypothalamic func-

tion has long been thought to involve changes in peripheral autonomic

nervous system function.243 Highlighting the interconnection of neu-

ral and hormonal controls, hyperinsulinemia after VMH lesions, which

is in part due to vagal activation,244 contributes to the development

of obesity.245 As discussed above, chronic activation of hypothalamic

AGRP neurons induces fat deposition independent of food intake,

acutely decreases fat oxidation, and increases lipogenesis.94 Pharma-

cological stimulation of the sympathetic nervous system prevents

these acute metabolic effects of AGRP neuron activation,94 although

the precise mechanism of this reversal is unknown. Interruption of

efferent, but not afferent, nerve fibers in the hepatic branch of the

vagus nerve prevents fat accumulation induced by reduction of brain

Mc4r signaling in pair-fed mice.88

Changes in fuel partitioning associated with autonomic control of

adipose tissue function are mediated by its sympathetic innervation.

Activation of adipose sympathetic nerves stimulates lipolysis and sup-

presses adipogenesis, whereas sympathetic denervation has the oppo-

site effects.240,246 Reduced adipose tissue sympathetic innervation or

function would therefore be expected to shift fuel partitioning toward

excessive fat deposition. This appears to be the case in leptin deficient

ob/ob mice that show markedly reduced adipose tissue sympathetic

innervation, which is normalized by long-term (7–14 days) peripheral

or i.c.v. leptin treatment independently of the decrease in food intake

induced by the hormone.247 Deletion of hypothalamic neurons medi-

ating this effect of leptin blunts restoration of the neural innervation
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as well as the associated reduction of body weight and food intake.247

Reduced sympathetic tone has long been hypothesized as an impor-

tant factor in obesity pathogenesis,248 however to what extent exces-

sive fat deposition in other forms of obesity besides the ob/ob mouse

can be traced directly to such autonomic dysfunction remains to be

determined.249

5.3 | Hormonal control

Multiple hormones affect fuel partitioning with consequences for fat

deposition. For example, estrogen modulates fat deposition in female

rats by altering free fatty acid partitioning independent of its effect on

food intake.250 In rats, prolactin directs circulating triglycerides away

from storage in adipose tissue into mammary glands for high-fat milk

production by decreasing LPL activity in adipose tissue and increasing

it in mammary glands.251 Glucocorticoids foster fat accumulation and

alter the distribution of body fat stores,252 and may do so under some

conditions without alterations in food intake.253 Two hormones, insu-

lin and leptin, warrant special consideration because of their pro-

nounced, opposite effects on fuel partitioning.

5.3.1 | Insulin

Insulin exerts major effects on fuel partitioning by directly stimulating

lipogenesis, facilitating fatty acid uptake in adipose tissue, and inhibit-

ing lipolysis and fatty acid oxidation. Given these anabolic effects of

the hormone, chronic hyperinsulinemia can be considered a potential

mechanism for obesity development. Indeed, long-term insulin admin-

istration results in obesity in rats, even with restriction of food intake

to or below that of control animals.254 Similarly, intensive insulin

treatment in patients with type 1 diabetes increases body fat content

with no apparent change in caloric intake.255,256 In addition to chroni-

cally elevated plasma insulin concentration, more subtle changes in

insulin secretion and action might contribute to a shift in fuel fluxes

that facilitate fat accumulation, such as (i) enhanced secretion in

response to glucose or other secretagogues in the postprandial state;

(ii) modification of receptor signaling affecting insulin sensitivity/

resistance in different tissues or metabolic pathways; (iii) temporal

patterning of secretion with regard to prandial, circadian or seasonal

rhythms; and (iv) interactions with the actions of other hormones,

especially glucagon.

Hyperinsulinemia, whether basal or in response to a glucose stim-

ulus, appears to be at least a contributing cause of excess fat accumu-

lation in many, but not all, animal models of obesity. Lesions of the

VMH increase plasma insulin concentrations70,257 and potentiate

the effect of glucose on insulin release,258 both independently of

hyperphagia. In this case, hyperinsulinemia appears contributory to

weight gain because rats with chemically-induced diabetes that are

then given VMH lesions still gain more body weight and fat245,259 and

show increased adipose tissue lipogenesis and decreased fatty acid

oxidation259 compared with diabetic rats without lesions.

ob/ob and db/db mice are hyperinsulinemic during the early suck-

ling period260,261 before the onset of hyperphagia and coincident with

the appearance of excess fat deposition,112,113 suggesting a role for

elevated insulin in these forms of genetic obesity. Accordingly, sup-

pression of hyperinsulinemia in ob/ob mice by genetic reduction of

insulin secretion prevents obesity.262 Prenatal Zucker rats carrying at

least one fa allele are hyperinsulinemic.263 However, obesity in Zucker

fa/fa rats may not be dependent on chronic hyperinsulinemia because

LPL activity and fat mass increase in fa/fa rats early during the suck-

ling period128,130,132 well before an observable increase in basal circu-

lating insulin concentration.264,265 In addition, pair-feeding into

adulthood prevents observable hyperinsulinemia, but not excess fat

deposition.126 Nnat deficient mice are hyperinsulinemic during their

early weight gain period, which precedes the onset of hyperphagic.221

Insulin also plays a role in diet-induced obesity. Insulin secretion

following oral glucose administration strongly predicts weight gain

and fat accumulation in animals fed a high-glycemic index diet.200

Mice fed a high- versus low-glycemic index diet also oxidize less

intravenously-infused fatty acid (palmitate) prior to developing excess

body fat,202 suggesting a causal role for insulin on fuel partitioning.

Preexisting hyperinsulinemia or increased insulin sensitivity as

assessed by glucose tolerance may not underlie susceptibility of out-

bred230 or selectively-bred225,266 rats to diet-induced obesity. Con-

versely, hyperinsulinemia may facilitate the development of obesity

once an obesogenic diet is consumed because genetically-induced

inhibition of insulin secretion prevents and reverses such diet-induced

obesity in mice.267,268

Sensitivity to insulin may differ with respect to tissue and meta-

bolic pathway, limiting inferences drawn from whole body measure-

ments. Regarding the former, mice with tissue-specific knockout of

adipose insulin receptors are resistant to diet-induced obesity,269

whereas those with muscle-specific knockout develop obesity,270

consistent with a redirection of substrate toward or away from oxida-

tion, respectively, as postulated by the fuel partitioning theory. Insulin

sensitivity may also differ with respect to glucose and fatty acid

metabolism, with consequences for fuel partitioning and fat deposi-

tion. In dogs, intravenous insulin infusion reduces the circulating con-

centration of free fatty acids at much lower doses than it does

glucose.271 Similarly, insulin inhibits lipolysis in isolated rodent adipo-

cytes at concentrations at least one order of magnitude lower than

those that stimulate glucose metabolism.272–274

Obesity is common in type 2 diabetes, characterized by insulin

resistance and hyperinsulinemia. Obesity in this case may seem para-

doxical given insulin's predominant anabolic effect on fat storage; one

might expect less fat accretion with reduced insulin sensitivity. How-

ever, as consistent with the foregoing, control of glucose uptake by

insulin is impaired in adipose tissue explants from insulin resistant

obese ob/ob mice or mice with dietary obesity, whereas the anti-

lipolytic effect of the hormone remains unimpaired.275 Furthermore,

insulin resistance restricted to liver by insulin receptor knockout or

hepatocytes by receptor inhibition results in similar divergent effects,

such that insulin fails to inhibit hepatic glucose production but still

stimulates lipogenesis.276,277 The selective effects of insulin resistance
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on adipose tissue and liver glucose metabolism appear conducive to

fat synthesis and storage, which might underlie, contribute to, or

maintain obesity in type 2 diabetes.275,278

5.3.2 | Leptin

When first discovered, leptin was considered the long-hypothesized

negative feedback “satiety signal,” secreted by adipose tissue in

response to fat accumulation with actions in the brain to restrain

eating behavior and maintain body weight, as proposed initially in

Kennedy's lipostatic hypothesis.103,279,280 Subsequent findings from

studies in obese and lean rodents and in humans led to a reinterpreta-

tion of this initial view, suggesting that the relative absence of the

hormone may in fact signal starvation.281,282

Both perspectives are commonly interpreted as consistent with a

role for leptin as an adipose signal to the brain, controlling energy

intake in the regulation of body fat mass. However, leptin's involve-

ment in obesity development and treatment may derive in part from

direct effects on fuel partitioning with secondary (downstream) conse-

quences for energy intake and expenditure, a possibility supported by

pair-feeding and time-course studies: Administration of leptin

by peripheral or i.c.v. injection or by overexpression of the hormone

produces a loss of body fat in ob/ob and lean rodents substantially

greater than that in pair-fed controls.283–286 Metabolic effects of lep-

tin treatment (i.e., loss of body fat and weight and increases in energy

expenditure) precede its suppressive effect on food intake in develop-

ing287–291 and adult rodents,292 and result in a shift in metabolic fuel

utilization away from lipogenesis and fat storage and toward fat mobi-

lization and oxidation.286,293–296

This view of leptin's actions is consistent not only with the patho-

genesis of obesity in the ob/ob mouse considered above, but also with

the observations that (i) leptin is less effective in reducing food intake

in lean mice and in mouse models of obesity with less severe obesity

than seen in ob/ob mice;284,297 (ii) acute injection of leptin increases

whole-body fat oxidation, measured by decreased RQ, before

decreasing food intake;298 and (iii) the acute increase in food intake

elicited in rats by injection of the fatty acid oxidation inhibitor, mer-

captoacetate, is greater early during long-term leptin treatment when

fat mobilization is maximal than it is later after body fat is depleted.299

Studies in which the metabolic effects of leptin treatment are specifi-

cally manipulated should help to determine to what degree leptin

affects food intake directly by signaling central pathways for appetite

control or indirectly through its peripheral metabolic effects that in

turn signal these pathways.

6 | HUMAN OBESITY

Research to understand the pathogenesis of human obesity is limited

by practical and ethical considerations involving, among other factors,

long-term studies under conditions allowing for precise manipulation

and measurement of intake, environmental variables, physical activity,

and biological parameters of interest. Consequently, investigations into

the etiology of obesity in humans depend largely on indirect evidence

from observational or correlational studies of biological or environmen-

tal variables and body weight, comparison of individuals with and with-

out obesity, and inferences drawn from the efficacy of dietary,

behavioral or pharmacological treatments for weight loss and, less

often, weight gain. Until resources and methods are available to over-

come these limitations, the value of models and theories of human obe-

sity pathogenesis lay in their explanatory power and benefit to clinical

practice and public health. With this in mind, we briefly review evidence

that goes some distance to address the above limitations, illustrating

how a fuel partitioning perspective can be usefully applied to advance a

cohesive understanding of obesity pathogenesis in humans.

6.1 | Relationship between fat fuel partitioning
and obesity

In studies tracking the metabolic fate of fixed oral fat loads containing

long-chain triglycerides, individuals with obesity oxidize less fat and

sequester more fatty acid in adipose tissue than do lean controls,

and have a rate of fat oxidation that is inversely related with their

degree of obesity.300–303 Consistent with this latter finding, adipose

tissue lipid turnover and lipolysis are reduced in obesity, and lipolysis

is inversely correlated with future long-term weight gain.304–306

Whole-body fat oxidation after overfeeding is also inversely corre-

lated with long-term weight gain up to 1 and 5 years later.307,308

6.2 | Fuel partitioning associated with genetic,
familial and post-obesity risk

Studies that attempt to address limitations of correlational studies or

comparisons between subjects with and without obesity employ par-

ticipants who, though without obesity at the time of the study, are

considered at risk or obesity-prone because they carry genetic vari-

ants associated with obesity, have a family history of obesity, or have

achieved substantial diet-induced weight loss. Compared with women

homozygous for the wild-type FTO gene, carriers of a FTO risk allele

with normal body mass index (BMI), waist circumference, and percent

body fat have reduced in vivo lipolytic activity measured by circulating

glycerol and lower rates of basal in vitro adipocyte lipolysis.309 Simi-

larly, whole-body fat oxidation is lower in carriers of the risk allele

despite similar BMI, fat mass, and estimated energy intakes.310,311

People with Prader-Willi syndrome (PWS), a well-studied

syndrome,312 develop severe hyperphagia and obesity during child-

hood. Studies indicate that an increase in adiposity313,314 and in circu-

lating insulin315 precede hyperphagia. Ghrelin is increased in this

initial phase of weight gain, despite the absence of hyperphagia, lead-

ing to the suggestion316 that this “hunger hormone” may drive fat

deposition through direct stimulation of lipogenesis.317–319

Whole-body fat oxidation is negatively correlated with fat mass

gain 1 and 2 years later in lean women with a family history of
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overweight or obesity who had lost weight to a BMI of < 25.320 Simi-

larly, during overfeeding, individuals self-identified as obesity-prone

based on personal and familial histories have, compared with those

identifying as obesity resistant, lower nocturnal concentrations of circu-

lating fatty acids and rates of fat oxidation, and greater future long-term

body weight and fat mass gains independent of baseline body composi-

tion and BMI.321 Fat oxidation is lower after a meal containing carbohy-

drates and fat in lean men with a family history of overweight or

obesity (BMI > 25.0) than it is in lean men with lean parents.322

Fat oxidation is reduced in patients who, through dieting, no lon-

ger have obesity compared with controls who never had obesity,

despite similar BMI, body fat mass, or total and resting energy expen-

ditures.323,324 Basal and stimulated lipolysis in adipocytes in vitro is

lower in people with prior obesity following weight loss than it is in

lean controls with similar BMI and body fat mass.325 Compared with

controls who never had obesity and matched for BMI and body fat

mass, people with prior obesity oxidize less dietary fatty acids,326

clear dietary lipids from the circulation more rapidly, and have lower

whole-body fat oxidation after a high-fat test meal.327,328 The above

findings suggest that low fat oxidation and adipose lipolysis could

enhance storage of dietary fat in adipose tissue and thus help drive

the weight re-gain that is often observed when dieting is

discontinued.

6.3 | Insulin sensitivity

Consistent with animal studies reviewed above: (i) insulin inhibits

lipolysis in human adipocytes at lower concentrations than it stimu-

lates glucose uptake and metabolism329; (ii) insulin administration in

humans stimulates plasma fatty acid uptake and suppresses lipolysis

in adipose tissue, and inhibits hepatic fatty acid oxidation and keto-

genesis at concentrations with little to no effect on glucose tissue

uptake or plasma levels330–332; and (iii) patients with obesity and type

2 diabetes are insulin resistant with respect to glucose disposal, but

show normal suppression of lipolysis and ketogenesis in response to

insulin infusion.332,333 As discussed above, these effects of insulin on

fat metabolism could serve to promote or maintain obesity in type

2 diabetes.275,278,333

Insulin sensitivity is reportedly increased and fat oxidation is

reduced after a high-fat meal in normal-weight healthy men with

familial predisposition to obesity versus normal-weight men without

such a predispotion.322 Similarly, compared with controls who never

had obesity, women with prior obesity following weight loss show

normal insulin sensitivity involving glucose metabolism, but increased

sensitivity to antilipolytic action, which would favor fat storage.334

Consistent with this observation, weight-reduced participants in a

feeding study eating a high-carbohydrate diet, compared with those

eating a low-carbohydrate diet, have lower level of circulating energy

availability in the late postprandial period, primarily because of

reduced fatty acid concentrations.335 Recent genetic analyses221 sug-

gest that children and adults can be stratified into obesity sub-types,

including one with elevated circulating insulin concentrations

associated with decreased NNAT expression, analogous to that found

in Nnat-deficient mice (although, in this case, differential insulin sensi-

tivity by tissue or metabolic pathway has not been studied). Finally,

acute insulin secretion in response to intravenous glucose infusion

and insulin sensitivity are positively correlated with prospective long-

term weight gain.336

7 | CONCLUSIONS AND IMPLICATIONS

The fuel partitioning theory of obesity pathogenesis presented here

derives from well-documented mechanisms of intermediary metabo-

lism and energy homeostasis. Results from studies using a wide vari-

ety of animal models throughout the last 80 years are, with few

exceptions, broadly consistent with the theory that obesity arises, at

least in part, from intrinsic disorders in fuel partitioning that lead to

the trapping of fat in adipose tissue, resulting, in turn, in compensa-

tory effects on energy intake and/or expenditure.

Rigorous mechanistic studies and well-powered clinical trials of

adequate duration will be needed to further establish whether and to

what extent such is the case in common forms of human obesity. As

discussed above, studies of individuals not currently with, but at risk

for, obesity seem especially promising. Within the limits of ethical

considerations and with adequate resources, these investigations

could be modeled after animal studies in which fat accretion and met-

abolic processes in critical tissues associated with fat deposition are

measured under conditions of fixed or restricted energy intake. Pro-

spective studies of normal and at-risk individuals involving measure-

ments of dynamic changes in tissue and organ metabolism and of

circulating fuel fluxes could provide insights into factors that are pre-

dictive of future weight gain and excess fat deposition. Such studies

could involve, for example, manipulation of diet composition,

responses to over- and under-feeding, drug and hormone treatment,

and the use of subjects post weight loss. These investigations may

uncover parameters of fuel partitioning that could identify additional

at-risk subpopulations for future studies.

The fuel partitioning theory has major implications for strategies

to prevent and treat obesity. Instead of a focus on reducing energy

intake and increasing energy expenditure, interventions that directly

target fuel partitioning would be expected to have greater efficacy

over the long term. Lifestyle interventions might emphasize diets that

lower the anabolic drive toward fat storage. Dietary treatment strate-

gies could also be used in conjunction with drugs that modify endo-

crine, neural, or cellular molecular mechanisms to augment this effect.

In this regard, it is worth considering that drugs currently in use

(e.g., glucagon-like-1 receptor agonists) to treat obesity may have

effects on fuel partitioning, independent of those on food intake, that

would contribute to their efficacy for weight loss.337–339

A fuel partitioning theory may also inform an obesity research

agenda by broadening the focus from how body fat mass is main-

tained to encompass how changes in fat synthesis, storage, mobiliza-

tion, and oxidation affect the supply and use of metabolic fuels for

energy production. Critical questions in this regard include (i) to what
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extent various genetic, endocrine, and neural factors affect food

intake directly by signaling satiety and hunger versus indirectly

through their effects on peripheral fuel metabolism, and (ii) how alter-

ations in metabolic fuel supply and cellular energy production result-

ing from shifts in fuel partitioning are sensed and drive changes in

energy intake and expenditure. Investigation into the multitude of

potential causes of obesity – e.g., the microbiome, circadian patterns,

obesogens, food insecurity and diet – might also benefit by consider-

ation of what these factors do to fuel partitioning. More broadly, it

remains to be elucidated whether the rapid development of obesity

during the recent decades among populations with essentially

unchanged genetic risk can be better explained by direct neuropsy-

chological effects of recent changes in the food supply (e.g., on the

palatability or reward associated with modern industrial foods) or by

their effects on the metabolic mechanisms of fuel partitioning.

A vast amount of data has accumulated since the development of

the first reproducible animal models of obesity; however, there is still

no validated comprehensive pathophysiological explanation for obe-

sity, and the efficacy of conventional approaches to prevention and

treatment remains limited. As discussed by Popper in his essay, “The
bucket and the searchlight: Two theories of knowledge,”340 a collection

of observations itself does not generate understanding – a theory, a

“searchlight,” is required to provide meaning and significance to the

observations. Here, we described a perspective of obesity pathogene-

sis with potentially broad explanatory power, in the hope that it will

illuminate a path to inform, quoting Popper, “… what kind of observa-

tions to make: whereto we ought to direct our attention; wherein to

take interest” in the continuing effort to end the obesity pandemic.
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